Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange

نویسندگان

  • Sulaiman N Basahel
  • Tarek T Ali
  • Mohamed Mokhtar
  • Katabathini Narasimharao
چکیده

Nanosized ZrO2 powders with near pure monoclinic, tetragonal, and cubic structures synthesized by various methods were used as catalysts for photocatalytic degradation of methyl orange. The structural and textural properties of the samples were analyzed by X-ray diffraction, Raman spectroscopy, TEM, UV-vis, X-ray photoelectron spectroscopy (XPS), and N2 adsorption measurements. The performance of synthesized ZrO2 nanoparticles in the photocatalytic degradation of methyl orange under UV light irradiation was evaluated. The photocatalytic activity of the pure monoclinic ZrO2 sample is higher than that of the tetragonal and cubic ZrO2 samples under optimum identical conditions. The characterization results revealed that monoclinic ZrO2 nanoparticles possessed high crystallinity and mesopores with diameter of 100 Å. The higher activity of the monoclinic ZrO2 sample for the photocatalytic degradation of methyl orange can be attributed to the combining effects of factors including the presence of small amount of oxygen-deficient zirconium oxide phase, high crystallinity, large pores, and high density of surface hydroxyl groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocatalytic degradation of methyl orange using ZnO and Fe doped ZnO: A comparative study

ZnO and 2% Fe doped ZnO photocatalytic nanomaterials were successfully synthesized by successive ionic layer adsorption and the reaction (SILAR) method. The characterizations of these nanomaterials were carried out using XRD, SEM and EDX techniques. XRD study shows that the samples have a hexagonal wurtzite crystal structure, size of which is in the range 21-23 nm. SEM shows nanoflakes or nano ...

متن کامل

Photocatalytic degradation of methyl orange using TiO2:Mg2+/zeolite composite under visible light irradiation

Photodegradation of methyl orange was investigated using synthesized TiO2:Mg2+/zeolite as the photocatalyst. The photocatalyst was characterized by X-ray, XRF, FT-IR, and SEM. The photocatalytic activities of TiO2:Mg2+/zeolite samples were evaluated in the degradation of methyl orange under visible light irradiation. The appropriate content of Mg in the composite was obtained as 4.711 wt% with ...

متن کامل

Structural, Optical and Magnetic Feature of Core-Shell Nanostructured Fe3O4@GO in Photocatalytic Activity

In this paper, structural, magnetic, optical, and photocatalytic properties of core-shell structure Fe3O4@GO nanoparticles have been compared with Fe3O4 nanoparticles in the degradation of methyl blue and methyl orange. For this purpose, GO nanosheets were wrapped around the APTMS-Fe3O4 nanoparticles and then charact...

متن کامل

Fabricant and characterization of SrWO4 and novel silver-doped SrWO4 using co-precipitation method: their photocatalytic performances for methyl orange degradation

A simple co-presipitation method has been developed to synthesize SrWO4 and Ag°-SrWO4 micro/nanostructures with different morphologies, including platelet-, star- and flower-like, in the presence of Na(B(C6H5)) as surfactant. The formation of platelet-, star- and flower-like shapes of particulate system was examined by electron microscopy technique. The products were characterized by X-ray diff...

متن کامل

Photocatalytic degradation of methyl orange and Congo red using C,N,S-tridoped SnO2 nanoparticles

In this study, the photocatalytic degradation of methyl orange and Congo red dye was investigated inaqueous solution using C,N,S-tridoped SnO2 nanoparticles as a nano photocatalyst. The degradationwas carried out under different conditions including the photocatalyst amount, initial concentrationand pH of the solution. The results indicated that the degradation of methyl orange and Congo redwas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015